29 research outputs found

    Surgical Skill Assessment on In-Vivo Clinical Data via the Clearness of Operating Field

    Full text link
    Surgical skill assessment is important for surgery training and quality control. Prior works on this task largely focus on basic surgical tasks such as suturing and knot tying performed in simulation settings. In contrast, surgical skill assessment is studied in this paper on a real clinical dataset, which consists of fifty-seven in-vivo laparoscopic surgeries and corresponding skill scores annotated by six surgeons. From analyses on this dataset, the clearness of operating field (COF) is identified as a good proxy for overall surgical skills, given its strong correlation with overall skills and high inter-annotator consistency. Then an objective and automated framework based on neural network is proposed to predict surgical skills through the proxy of COF. The neural network is jointly trained with a supervised regression loss and an unsupervised rank loss. In experiments, the proposed method achieves 0.55 Spearman's correlation with the ground truth of overall technical skill, which is even comparable with the human performance of junior surgeons.Comment: MICCAI 201

    Evaluating surgical skills from kinematic data using convolutional neural networks

    Full text link
    The need for automatic surgical skills assessment is increasing, especially because manual feedback from senior surgeons observing junior surgeons is prone to subjectivity and time consuming. Thus, automating surgical skills evaluation is a very important step towards improving surgical practice. In this paper, we designed a Convolutional Neural Network (CNN) to evaluate surgeon skills by extracting patterns in the surgeon motions performed in robotic surgery. The proposed method is validated on the JIGSAWS dataset and achieved very competitive results with 100% accuracy on the suturing and needle passing tasks. While we leveraged from the CNNs efficiency, we also managed to mitigate its black-box effect using class activation map. This feature allows our method to automatically highlight which parts of the surgical task influenced the skill prediction and can be used to explain the classification and to provide personalized feedback to the trainee.Comment: Accepted at MICCAI 201

    Deep Reinforcement Learning for Surgical Gesture Segmentation and Classification

    Full text link
    Recognition of surgical gesture is crucial for surgical skill assessment and efficient surgery training. Prior works on this task are based on either variant graphical models such as HMMs and CRFs, or deep learning models such as Recurrent Neural Networks and Temporal Convolutional Networks. Most of the current approaches usually suffer from over-segmentation and therefore low segment-level edit scores. In contrast, we present an essentially different methodology by modeling the task as a sequential decision-making process. An intelligent agent is trained using reinforcement learning with hierarchical features from a deep model. Temporal consistency is integrated into our action design and reward mechanism to reduce over-segmentation errors. Experiments on JIGSAWS dataset demonstrate that the proposed method performs better than state-of-the-art methods in terms of the edit score and on par in frame-wise accuracy. Our code will be released later.Comment: 8 pages, 2 figures, accepted for MICCAI 201

    Early-, late-, and very late-term prediction of target lesion failure in coronary artery stent patients: An international multi-site study.

    No full text
    The main intervention for coronary artery disease is stent implantation. We aim to predict post-intervention target lesion failure (TLF) months before its onset, an extremely challenging task in clinics. This post-intervention decision support tool helps physicians to identify at-risk patients much earlier and to inform their follow-up care. We developed a novel machine-learning model with three components: a TLF predictor at discharge via a combination of nine conventional models and a super-learner, a risk score predictor for time-to-TLF, and an update function to manage the size of the at-risk cohort. We collected data in a prospective study from 120 medical centers in over 25 countries. All 1975 patients were enrolled during Phase I (2016–2020) and were followed up for five years post-intervention. During Phase I, 151 patients (7.6%) developed TLF, which we used for training. Additionally, 12 patients developed TLF after Phase I (right-censored). Our algorithm successfully classifies 1635 patients as not at risk (TNR = 90.23%) and predicts TLF for 86 patients (TPR = 52.76%), outperforming its training by identifying 33% of the right-censored patients. We also compare our model against five state of the art models, outperforming them all. Our prediction tool is able to optimize for both achieving higher sensitivity and maintaining a reasonable size for the at-risk cohort over time

    Artificial intelligence for prognostic scores in oncology: A benchmarking study.

    No full text
    Introduction: Prognostic scores are important tools in oncology to facilitate clinical decision-making based on patient characteristics. To date, classic survival analysis using Cox proportional hazards regression has been employed in the development of these prognostic scores. With the advance of analytical models, this study aimed to determine if more complex machine-learning algorithms could outperform classical survival analysis methods. Methods: In this benchmarking study, two datasets were used to develop and compare different prognostic models for overall survival in pan-cancer populations: a nationwide EHR-derived de-identified database for training and in-sample testing and the OAK (phase III clinical trial) dataset for out-of-sample testing. A real-world database comprised 136K first-line treated cancer patients across multiple cancer types and was split into a 90% training and 10% testing dataset, respectively. The OAK dataset comprised 1,187 patients diagnosed with non-small cell lung cancer. To assess the effect of the covariate number on prognostic performance, we formed three feature sets with 27, 44 and 88 covariates. In terms of methods, we benchmarked ROPRO, a prognostic score based on the Cox model, against eight complex machine-learning models: regularized Cox, Random Survival Forests (RSF), Gradient Boosting (GB), DeepSurv (DS), Autoencoder (AE) and Super Learner (SL). The C-index was used as the performance metric to compare different models. Results: For in-sample testing on the real-world database the resulting C-index [95% CI] values for RSF 0.720 [0.716, 0.725], GB 0.722 [0.718, 0.727], DS 0.721 [0.717, 0.726] and lastly, SL 0.723 [0.718, 0.728] showed significantly better performance as compared to ROPRO 0.701 [0.696, 0.706]. Similar results were derived across all feature sets. However, for the out-of-sample validation on OAK, the stronger performance of the more complex models was not apparent anymore. Consistently, the increase in the number of prognostic covariates did not lead to an increase in model performance. Discussion: The stronger performance of the more complex models did not generalize when applied to an out-of-sample dataset. We hypothesize that future research may benefit by adding multimodal data to exploit advantages of more complex models

    Optimal Sub-Sequence Matching for the Automatic Prediction of Surgical Tasks

    Get PDF
    International audienceSurgery is one of the riskiest and most important medical acts that is performed today. The desires to improve patient outcomes, surgeon training, and also to reduce the costs of surgery, have motivated surgeons to equip their Operating Rooms with sensors that describe the surgical intervention. The richness and complexity of the data that is collected calls for new machine learning methods to support pre-, peri- and post-surgery (before, during and after). This paper introduces a new method for the prediction of the next task that the surgeon is going to perform during the surgery (peri). Our method bases its prediction on the optimal matching of the current surgery to a set of pre-recorded surgeries. We assess our method on a set of neurosurgeries (lumbar disc herniation removal) and show that our method outperforms the state of the art by providing a prediction (of the next task that is going to be performed by the surgeon) more than 85% of the time with a 95% accurac
    corecore